Comments on S. P. Bryan's, Emotional Intelligence and Intrapersonal Conversations

Submitted by James M. Honeycutt
Louisiana State University

Enhancing EI Intervention Through Imagined Interactions

The article by Suzette Bryan in the April 2006 issue of Issues and Recent Developments in Emotional Intelligence, on the relationship between emotional intelligence and intrapersonal conversations, is provocative and insightful. I am the director of the Center of Imagined Interaction Research at LSU. We analyze internal conversations that individuals have with significant others in their minds and are currently analyzing road rage, physiology, and imagined interactions in a state police driving simulator that troopers train on. The simulator creates a virtual reality. For example, people who use the simulator can be induced to become angry and impatient drivers, and when this occurs there is a measurable change in heart-rate variability and venting at others while driving. Venting at other drivers often reflects verbalized rage as the person imagines getting retribution for being cut off or delayed.

Symbolic interactionism and script theory have provided the theoretical foundation for the Imagined Interaction (II) construct (Honeycutt, 2003). Mead (1934) described the internalized conversation of gestures and showed that individuals can have present a variety of scenarios for envisioning the alternative possible overt completions of any given act in which individuals are involved. The individual can "test out implicitly the various possible completions of an already initiated act in advance of actual completion of the act," and thus choose "the one which it is most desirable to perform explicitly or carry into overt effect" (Mead, 1934; p. 117). This process pertains, in part, to what Mead called the individual's internal conversation with him/herself. These internal dialogues could involve taking the role of others to see ourselves as others see us.

According to Manis and Meltzer (1978), this type of pre-communicative mental activity is a peculiar type of activity that goes on in the experience of the person. The person responds to him or herself. Mead adds that this activity is essential to the constitution of the self-concept: "That the person should be responding to himself is necessary to the self, and it is this sort of social conduct which provides behavior within which that self appears" (p. 118). What is important about this type of mental activity is that (1) one may consciously take the role of others, imagining how they might respond to one's messages within particular situations, and thus (2) one can test and imagine the consequences of alternative messages prior to communication (Honeycutt, Zagacki, & Edwards, 1989).

If a major function of IIs is rehearsing for anticipated interaction, then it is possible that IIs allow individuals to obtain information from learned, cognitive scripts (Schank & Abelson, 1977). Research on planning usually assumes that actors access planning
behaviors from particular cognitive structures, such as cognitive schemata and scripts or procedural records (Honeycutt, 2003). Script theorists (e.g., Schank & Abelson, 1977) have argued that cognitive scripts are related to planning in that scripts call up cognitive representations of specific goal states and the behaviors needed to achieve them. To obtain goals, actors must follow the general flow of the script. Like scripts, imagined interactions are abstractions of ongoing streams of behavior to which central tendencies are extracted and stored. However, they may not accurately represent real conversations, and may be both functional and dysfunctional.

I have written an entire book on imagined interaction that contains chapters dealing with six functions of IIs including self-awareness, compensation, catharsis, rehearsal, conflict management, and maintaining relationships (Honeycutt, 2003). There are chapters dealing with cross-cultural variability, organizational efficiency, deception, and skills to improve IIs before entering a situation in which one will be evaluated (e.g., a job interview, or forging favorable impressions on a first date). We can induce imaginary conversations in people and have them role-play expected behaviors while preparing for a contingency of possible outcomes (Honeycutt, forthcoming).

Physiology and IIs

We are now measuring change in adrenalin and anxiety levels before, during, and after arguments. Individuals imagine discussing a topic of concern that involved prior arguments with a relational partner. Sometimes they keep journal accounts of these encounters as well as being induced to imagine discussing the issue with their partner. We use two procedures in this induction: 1) a talk-out loud procedure in which they role-play a conversation about the issue and voice their anticipated responses, and 2) a dialogue script in which they write down their statements and the anticipated statements of the partner.

Blood pressure, heart-rate beats per minute, and heart-rate variability are measured during the induction as well as during a time-period when the partners actually discuss the topic. In addition, we are currently assessing the relationship between imagined interaction and emotion as automobile drivers are “venting” at offending drivers in heavy traffic conditions when they are late for an important meeting with business clients. Rather than using mere paper and pencil surveys on driving behaviors, we are using driving simulators from Applied Simulation Technologies that are used to train state police officers in driving skills. We are learning from this research that there are individual differences in having imagined interactions while driving. Some of these differences are personality differences in driving profiles such as being an angry driver, impatient, competing, or punishing driver. We are measuring IIs used for venting at offending drivers as well as for catharsis and tension release while driving. The presence of passengers, music, weather conditions, and drinking patterns, and personality profiles in terms of driving behaviors are correlated with aggressive driving tendencies including acceleration, braking, swerving, and tailgating.
In some of our research, people wear a chestbelt connected to a miniature monitor that measures heart-rate variability and instantaneous heart rate changes in milliseconds in the form of interbeat intervals (IBI). IBI is a measure of the time in milliseconds between adjacent heart beats. High IBI rates are related to increased levels of adrenalin, anxiety, and arousal. Pilot data reveal increased IBI for individuals thinking about upcoming conflict episodes with significant others including romantic partners and work associates (particularly supervisors).

Figure 1 contains a sample diagram reflecting a 34 year-old woman who came to our driving simulator lab. She was part of our study designed to see how venting at others reflects aggressive driving and road rage incidents. She was told to imagine while driving the simulator that she was late for a pressing appointment with a business client. Then the simulator created a situation in which the traffic was congested and she was cutoff by a distracted driver talking on a cell phone. She indicated that she had negative II’s with offending drivers.

Figure 1 portrays physiological data for this driving simulation. After a baseline time period, we press a marker button on our physiological monitor to start data collection and to note critical time periods. The first time arrow (Δ) is noted after the initial, basal resting period and begins the negative II with the offending driver talking on the cellphone. Her heart-rate is excellent. The highest beat per minute is 86. Her IBI ranges from 309 to 891. The amplitude of the peaks and valleys reflect adrenalin.

Figure 1: Physiological Correlates of Venting at an Offending Driver

We are trying to teach this woman emotional intelligence while driving. She needs to utilize the power of emotional intelligence through positive mental imagery rather than ruminating about negative outcomes with the offending driver. We are attempting to
teach her to empower herself through emotional self-control and how catastrophizing about worst-case scenarios often are futile (Honeycutt, 2000). She is taught the power of positive thinking through imagining productive outcomes. Furthermore, she is presented with research studies revealing how pessimism is associated with depression and negative health indicators such as earlier morbidity while optimism is associated overall life happiness and specific outcomes including faster recovery after coronary surgery (Myers & Diener, 1995; Scheier & Carver, 1989).

References

